Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1222037.v1

ABSTRACT

Waning immunity after two SARS-CoV-2 mRNA vaccinations and the emergence of variants precipitated the need for a third dose of vaccine. We evaluated early safety and immunogenicity after a third mRNA vaccination in adults who received the mRNA-1273 primary series in the Phase 1 trial approximately 9 to 10 months earlier. The booster vaccine formulations included 100 mcg of mRNA-1273, 50 mcg of mRNA-1273.351 that encodes Beta variant spike protein, and bivalent vaccine of 25 mcg each of mRNA-1273 and mRNA-1273.351. A third dose of mRNA vaccine appeared safe with acceptable reactogenicity. Vaccination induced rapid increases in binding and neutralizing antibody titers to D614G, Beta, and Delta variants that were similar or greater than peak responses after the second dose. Spike-specific CD4+ and CD8+ T cells increased to similar levels as after the second dose. A third mRNA vaccination was well tolerated and generated robust humoral and T cell responses. ClinicalTrials.gov numbers NCT04283461 (mRNA-1273 Phase 1) and NCT04785144 (mRNA-1273.351 Phase 1)

2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.20.21268034

ABSTRACT

SARS-CoV-2 infections are frequently milder in children than adults, suggesting that immune responses may vary with age. However, information is limited regarding SARS-CoV-2 immune responses in young children. We compared Receptor Binding Domain binding antibody (RBDAb) and SARS-CoV-2 neutralizing antibody (neutAb) in children aged 0-4 years, 5-17 years, and in adults aged 18-62 years in a SARS-CoV-2 household study. Among 55 participants seropositive at enrollment, children aged 0-4 years had >10-fold higher RBDAb titers than adults (373 vs.35, P<0.0001), and the highest RBDAb titers in 11/12 households with seropositive children and adults. Children aged 0-4 years had 2-fold higher neutAb than adults, resulting in higher binding to neutralizing (B/N)Ab ratios compared to adults (1.9 vs. 0.4 for ID50, P=0.0002). Findings suggest that young children mount robust antibody responses to SARS-CoV-2 following community infections. Additionally, these results support using neutAb to measure the immunogenicity of COVID-19 vaccines in children aged 0-4 years.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.15.21267805

ABSTRACT

Data obtained on SARS-CoV-2 variant Omicron suggest that Omicron poses an increased risk of symptomatic breakthrough infections in people who receive only 2 doses of mRNA-1273. Administration of a booster mRNA vaccine may substantially reduce this risk.


Subject(s)
Breakthrough Pain
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.23.465542

ABSTRACT

mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. We immunized rhesus macaques at weeks 0 and 4 and assessed immune responses over one year in blood, upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody binding titers also decreased in bronchoalveolar lavage (BAL). Four days after challenge, virus was unculturable in BAL and subgenomic RNA declined ~3-log10 compared to control animals. In nasal swabs, sgRNA declined 1-log10 and virus remained culturable. Anamnestic antibody responses (590-fold increase) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.

5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.11.456015

ABSTRACT

Neutralizing antibody responses gradually wane after vaccination with mRNA-1273 against several variants of concern (VOC), and additional boost vaccinations may be required to sustain immunity and protection. Here, we evaluated the immune responses in nonhuman primates that received 100 {micro}g of mRNA-1273 vaccine at 0 and 4 weeks and were boosted at week 29 with mRNA-1273 (homologous) or mRNA-1273.{beta} (heterologous), which encompasses the spike sequence of the B.1.351 (beta or {beta}) variant. Reciprocal ID50 pseudovirus neutralizing antibody geometric mean titers (GMT) against live SARS-CoV-2 D614G and the {beta} variant, were 4700 and 765, respectively, at week 6, the peak of primary response, and 644 and 553, respectively, at a 5-month post-vaccination memory time point. Two weeks following homologous or heterologous boost {beta}-specific reciprocal ID50 GMT were 5000 and 3000, respectively. At week 38, animals were challenged in the upper and lower airway with the {beta} variant. Two days post-challenge, viral replication was low to undetectable in both BAL and nasal swabs in most of the boosted animals. These data show that boosting with the homologous mRNA-1273 vaccine six months after primary immunization provides up to a 20-fold increase in neutralizing antibody responses across all VOC, which may be required to sustain high-level protection against severe disease, especially for at-risk populations. One-sentence summarymRNA-1273 boosted nonhuman primates have increased immune responses and are protected against SARS-CoV-2 beta infection.


Subject(s)
Severe Acute Respiratory Syndrome
6.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3817798

ABSTRACT

SARS-CoV-2 is one of three coronaviruses that have crossed the animal-to-human barrier in the past two decades. The development of a universal human coronavirus vaccine could prevent future pandemics. We characterized 198 antibodies isolated from four COVID19+ subjects and identified 14 SARS-CoV-2 neutralizing antibodies. One targeted the NTD, one recognized an epitope in S2 and twelve bound the RBD. Three anti-RBD neutralizing antibodies cross-neutralized SARS-CoV-1 by effectively blocking binding of both the SARS-CoV-1 and SARS-CoV-2 RBDs to the ACE2 receptor. Using the K18-hACE transgenic mouse model, we demonstrate that the neutralization potency rather than the antibody epitope specificity regulates the in vivo protective potential of anti-SARS-CoV-2 antibodies. The anti-S2 antibody also neutralized SARS-CoV-1 and all four cross-neutralizing antibodies neutralized the B.1.351 mutant strain. Thus, our study reveals that epitopes in S2 can serve as blueprints for the design of immunogens capable of eliciting cross-neutralizing coronavirus antibodies.Funding: This work was supported by generous donations to the Fred Hutch COVID-19 Research Fund, by grants (P51OD011132 and 3U19AI057266-17S1) from the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), by the Bill and Melinda Gates Foundation (OPP1170236/INV-004923), by the Emory Executive Vice President for Health Affairs Synergy Fund award, the Pediatric Research Alliance Center for Childhood Infections and Vaccines and Children’s Healthcare of Atlanta, the Woodruff Health Sciences Center 2020 COVID-19 CURE Award and the Emergent Ventures Award (HYC). Support was also provided by leMinistère de l’Économie et de l’Innovation du Québec, Programme de soutien aux organismes de recherche et d’innovation to A.F., by the Fondation du CHUM and by a CIHR foundation grant #352417 to A.F. A.F. is the recipient of Canada Research Chair on Retroviral Entry no. RCHS0235 950-232424. We thank the J. B. Pendleton Charitable Trust for its generous support of Formulatrix robotic instruments. Results shown in this report are derived from work performed at Argonne National Laboratory, Structural Biology Center (SBC), ID-19, at the Advanced Photon Source. SBC-CAT is operated by U Chicago Argonne, LLC, for the U.S. Department of Energy, Office of Biological and Environmental Research under contract DE-AC02-06CH11357.Conflict of Interest: L.S., M.P., and A.T.M. have filed a provisional patent application on the SARS-CoV-2 specific monoclonal antibodies from CV1, CV2 and PCV1. L.S., M.P., A.T.M., and A.F. have filed a provisional patent application on the mAbs from CV3. H.C. reports grants from Bill and Melinda Gates Foundation, and NIH during the conduct of the study; consulting with Merck and the Bill & Melinda Gates Foundation, grants from Sanofi Pasteur and Gates Ventures outside the submitted work, and non-financial support from Cepheid and Ellume.Ethical Approval: Blood and peripheral blood mononuclear cells (PBMCs) were isolated from COVID19+ patients using protocols approved by Institutional Review Boards at Fred Hutch Cancer Research Center, University of Washington and Seattle Children’s Research Institute. Informed consent was obtained from all participants and the University of Washington and/or Fred Hutchinson Cancer Research Center and CHUM Institutional Review Boards approved the entire study and procedures. All experiments adhered to the guidelines approved by the Emory University Institutional Animal Care and Committee.


Subject(s)
Coronavirus Infections , COVID-19 , Communicable Diseases , Leukemia, T-Cell , Sleep Disorders, Circadian Rhythm
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.23.436684

ABSTRACT

SUMMARY SARS-CoV-2 is one of three coronaviruses that have crossed the animal-to-human barrier in the past two decades. The development of a universal human coronavirus vaccine could prevent future pandemics. We characterized 198 antibodies isolated from four COVID19+ subjects and identified 14 SARS-CoV-2 neutralizing antibodies. One targeted the NTD, one recognized an epitope in S2 and twelve bound the RBD. Three anti-RBD neutralizing antibodies cross-neutralized SARS-CoV-1 by effectively blocking binding of both the SARS-CoV-1 and SARS-CoV-2 RBDs to the ACE2 receptor. Using the K18-hACE transgenic mouse model, we demonstrate that the neutralization potency rather than the antibody epitope specificity regulates the in vivo protective potential of anti-SARS-CoV-2 antibodies. The anti-S2 antibody also neutralized SARS-CoV-1 and all four cross-neutralizing antibodies neutralized the B.1.351 mutant strain. Thus, our study reveals that epitopes in S2 can serve as blueprints for the design of immunogens capable of eliciting cross-neutralizing coronavirus antibodies.


Subject(s)
Coronavirus Infections , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL